Optimality, Fairness, and Robustness in Speed Scaling Designs — Extended Version
نویسندگان
چکیده
System design must strike a balance between energy and performance by carefully selecting the speed at which the system will run. In this work, we examine fundamental tradeoffs incurred when designing a speed scaler to minimize a weighted sum of expected response time and energy use per job. We prove that a popular dynamic speed scaling algorithm is 2-competitive for this objective and that no “natural” speed scaler can improve on this. Further, we prove that energy-proportional speed scaling works well across two common scheduling policies: Shortest Remaining Processing Time (SRPT) and Processor Sharing (PS). Third, we show that under SRPT and PS, gated-static speed scaling is nearly optimal when the mean workload is known, but that dynamic speed scaling provides robustness against uncertain workloads. Finally, we prove that speed scaling magnifies unfairness, notably SRPT’s bias against large jobs and the bias against short jobs in non-preemptive policies. However, PS remains fair under speed scaling. Together, these results show that the speed scalers studied here can achieve any two, but only two, of optimality, fairness, and robustness.
منابع مشابه
Power-aware speed scaling in processor sharing systems: Optimality and robustness
Adapting the speed of a processor is an effective method to reduce energy consumption. This paper studies the optimal way to scale speed to balance response time and energy consumption under processor sharing scheduling. It is shown that using a static rate while the system is busy provides nearly optimal performance, but having a wider range of available speeds increases robustness to differen...
متن کاملOptimal Design for Count Data with Binary Predictors in Item Response Theory
The Rasch Poisson counts model (RPCM) allows for the analysis of mental speed which represents a basic component of human intelligence. An extended version of the RPCM, which incorporates covariates in order to explain the difficulty, provides a means for modern rule-based item generation. After a short introduction into the extended RPCM we will develop locally D-optimal calibration designs fo...
متن کاملSensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter
This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...
متن کاملShrinkage simplex-centroid designs for a quadratic mixture model
A simplex-centroid design for q mixture components comprises of all possible subsets of the q components, present in equal proportions. The design does not contain full mixture blends except the overall centroid. In real-life situations, all mixture blends comprise of at least a minimum proportion of each component. Here, we introduce simplex-centroid designs which contain complete blend...
متن کاملFairness in Combinatorial Auctioning Systems
One of the Multi-Agent Systems that is widely used by various government agencies, buyers and sellers in a market economy, in such a manner so as to attain optimized resource allocation, is the Combinatorial Auctioning System (CAS). We study another important aspect of resource allocations in CAS, namely fairness. We present two important notions of fairness in CAS, extended fairness and basic ...
متن کامل